Evaluating frequency-wise directed connectivity of BOLD signals applying relative power contribution with the linear multivariate time-series models.

نویسندگان

  • Okito Yamashita
  • Norihiro Sadato
  • Tomohisa Okada
  • Tohru Ozaki
چکیده

In this article, we propose a statistical method to evaluate directed interactions of functional magnetic-resonance imaging (fMRI) data. The multivariate autoregressive (MAR) model was combined with the relative power contribution (RPC) in this analysis. The MAR model was fitted to the data to specify the direction of connections, and the RPC quantifies the strength of connections. As the RPC is computed in the frequency domain, we can evaluate the connectivity for each frequency component. From this, we can establish whether the specified connections represent low- or high-frequency connectivity, which cannot be examined solely using the estimated MAR coefficients. We applied this analysis method to fMRI data obtained during visual motion tasks, confirming previous reports of bottom-up connectivity around the frequency corresponding to the block experimental design. Furthermore, we used the MAR model with exogenous variables (MARX) to extend our understanding of these data, and to show how the input to V1 transfers to higher cortical areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for the analysis of short-term variability of heart rate and blood pressure in frequency domain

Cardiovascular variability signals provide information about the functioning of the autonomous nervous system and other physiological sub-systems. Because of large interand intra-subject variability, sophisticated data analysis methods are needed to gain this information. An important approach for analysing signals is the analysis in the frequency domain. In this thesis, spectral analysis of ca...

متن کامل

استفاده از آنتروپی شانون در پیش‌پردازش ورودی شبکه بیزین جهت مدل‌سازی سری‌های زمانی

Selecting appropriate inputs for intelligent models is important due to reduce costs and save time and increase accuracy and efficiency of models. The purpose of this study is using Shannon entropy to select the optimum combination of input variables in time series modeling. Monthly time series of precipitation, temperature and radiation in the period of 1982-2010 was used from Tabriz synoptic ...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis

This tutorial paper introduces a common framework for the evaluation of widely used frequency-domain measures of coupling (coherence, partial coherence) and causality (directed coherence, partial directed coherence) from the parametric representation of linear multivariate (MV) processes. After providing a comprehensive time-domain definition of the various forms of connectivity observed in MV ...

متن کامل

Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling

Granger causality is a method for identifying directed functional connectivity based on time series analysis of precedence and predictability. The method has been applied widely in neuroscience, however its application to functional MRI data has been particularly controversial, largely because of the suspicion that Granger causal inferences might be easily confounded by inter-regional differenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2005